Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(8): 3776-3786, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38346331

RESUMO

Phenols emitted from biomass burning contribute significantly to secondary organic aerosol (SOA) formation through the partitioning of semivolatile products formed from gas-phase chemistry and multiphase chemistry in aerosol liquid water and clouds. The aqueous-phase SOA (aqSOA) formed via hydroxyl radical (•OH), singlet molecular oxygen (1O2*), and triplet excited states of organic compounds (3C*), which oxidize dissolved phenols in the aqueous phase, might play a significant role in the evolution of organic aerosol (OA). However, a quantitative and predictive understanding of aqSOA has been challenging. Here, we develop a stand-alone box model to investigate the formation of SOA from gas-phase •OH chemistry and aqSOA formed by the dissolution of phenols followed by their aqueous-phase reactions with •OH, 1O2*, and 3C* in cloud droplets and aerosol liquid water. We investigate four phenolic compounds, i.e., phenol, guaiacol, syringol, and guaiacyl acetone (GA), which represent some of the key potential sources of aqSOA from biomass burning in clouds. For the same initial precursor organic gas that dissolves in aerosol/cloud liquid water and subsequently reacts with aqueous phase oxidants, we predict that the aqSOA formation potential (defined as aqSOA formed per unit dissolved organic gas concentration) of these phenols is higher than that of isoprene-epoxydiol (IEPOX), a well-known aqSOA precursor. Cloud droplets can dissolve a broader range of soluble phenols compared to aqueous aerosols, since the liquid water contents of aerosols are orders of magnitude smaller than cloud droplets. Our simulations suggest that highly soluble and reactive multifunctional phenols like GA would predominantly undergo cloud chemistry within cloud layers, while gas-phase chemistry is likely to be more important for less soluble phenols. But in the absence of clouds, the condensation of low-volatility products from gas-phase oxidation followed by their reversible partitioning to organic aerosols dominates SOA formation, while the SOA formed through aqueous aerosol chemistry increases with relative humidity (RH), approaching 40% of the sum of gas and aqueous aerosol chemistry at 95% RH for GA. Our model developments of biomass-burning phenols and their aqueous chemistry can be readily implemented in regional and global atmospheric chemistry models to investigate the aqueous aerosol and cloud chemistry of biomass-burning organic gases in the atmosphere.


Assuntos
Compostos Orgânicos , Fenóis , Biomassa , Aerossóis , Água/química
2.
J Chem Phys ; 159(17)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37916590

RESUMO

The role of ambient oxygen gas (O2) on molecular and nanoparticle formation and agglomeration was studied in laser ablation plumes. As a lab-scale surrogate to a high explosion detonation event, nanosecond laser ablation of an aluminum alloy (AA6061) target was performed in atmospheric pressure conditions. Optical emission spectroscopy and two mass spectrometry techniques were used to monitor the early to late stages of plasma generation to track the evolution of atoms, molecules, clusters, nanoparticles, and agglomerates. The experiments were performed under atmospheric pressure air, atmospheric pressure nitrogen, and 20% and 5% O2 (balance N2), the latter specifically with in situ mass spectrometry. Electron microscopy was performed ex situ to identify crystal structure and elemental distributions in individual nanoparticles. We find that the presence of ≈20% O2 leads to strong AlO emission, whereas in a flowing N2 environment (with trace O2), AlN and strong, unreacted Al emissions are present. In situ mass spectrometry reveals that as O2 availability increases, Al oxide cluster size increases. Nanoparticle agglomerates formed in air are found to be larger than those formed under N2 gas. High-resolution transmission electron microscopy demonstrates that Al2O3 and AlN nanoparticle agglomerates are formed in both environments; indicating that the presence of trace O2 can lead to Al2O3 nanoparticle formation. The present results highlight that the availability of O2 in the ambient gas significantly impacts spectral signatures, cluster size, and nanoparticle agglomeration behavior. These results are relevant to understanding debris formation in an explosion event, and interpreting data from forensic investigations.

3.
Environ Sci Process Impacts ; 25(10): 1718-1731, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37781874

RESUMO

Microplastic particles are of increasing environmental concern due to the widespread uncontrolled degradation of various commercial products made of plastic and their associated waste disposal. Recently, common technology used to repair sewer pipes was reported as one of the emission sources of airborne microplastics in urban areas. This research presents results of the multi-modal comprehensive chemical characterization of the microplastic particles related to waste discharged in the pipe repair process and compares particle composition with the components of uncured resin and cured plastic composite used in the process. Analysis of these materials employs complementary use of surface-enhanced Raman spectroscopy, scanning transmission X-ray spectro-microscopy, single particle mass spectrometry, and direct analysis in real-time high-resolution mass spectrometry. It is shown that the composition of the relatively large (100 µm) microplastic particles resembles components of plastic material used in the process. In contrast, the composition of the smaller (micrometer and sub-micrometer) particles is significantly different, suggesting their formation from unintended polymerization of water-soluble components occurring in drying droplets of the air-discharged waste. In addition, resin material type influences the composition of released microplastic particles. Results are further discussed to guide the detection and advanced characterization of airborne microplastics in future field and laboratory studies pertaining to sewer pipe repair technology.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Água/análise , Espectrometria de Massas , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
4.
Environ Sci Technol ; 57(38): 14182-14193, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37708377

RESUMO

Recent studies have shown that instantaneous gas-particle equilibrium partitioning assumptions fail to predict SOA formation, even at high relative humidity (∼85%), and photochemical aging seems to be one driving factor. In this study, we probe the minimum aging time scale required to observe nonequilibrium partitioning of semivolatile organic compounds (SVOCs) between the gas and aerosol phase at ∼50% RH. Seed isoprene SOA is generated by photo-oxidation in the presence of effloresced ammonium sulfate seeds at <1 ppbv NOx, aged photochemically or in the dark for 0.3-6 h, and subsequently exposed to fresh isoprene SVOCs. Our results show that the equilibrium partitioning assumption is accurate for fresh isoprene SOA but breaks down after isoprene SOA has been aged for as short as 20 min even in the dark. Modeling results show that a semisolid SOA phase state is necessary to reproduce the observed particle size distribution evolution. The observed nonequilibrium partitioning behavior and inferred semisolid phase state are corroborated by offline mass spectrometric analysis on the bulk aerosol particles showing the formation of organosulfates and oligomers. The unexpected short time scale for the phase transition within isoprene SOA has important implications for the growth of atmospheric ultrafine particles to climate-relevant sizes.


Assuntos
Poluentes Atmosféricos , Hemiterpenos , Material Particulado , Butadienos , Compostos Orgânicos , Aerossóis
5.
Phys Chem Chem Phys ; 24(43): 26583-26590, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36285772

RESUMO

The evolution from gas-phase oxidation to nanoparticle and agglomerate formation was studied in nanosecond laser-produced plasmas of a multi-principal element alloy target in air. Gas-phase oxidation of plasma species was monitored in situ via optical emission spectroscopy, while a custom-built single particle mass spectrometer was used to measure size and compositions of agglomerated nanoparticles formed in laser ablation plumes. Ex situ analysis employing transmission electron microscopy was used to study nanoparticle morphology, crystal structure, and element distribution at the nanoscale. Emission spectra indicate that gas-phase oxidation of elements in the alloy target are formed at varying times during plume evolution, and mass spectrometry results indicate fractal agglomerates contain all principal alloying elements and their oxides. Finally, electron microscopy characterization illustrates that these agglomerates consist of multiple material types: sub-10 nm diameter amorphous, multi-element nanoparticles, ≈10-30 nm diameter Ti-rich crystalline oxide nanoparticles, and ejected base material. Results highlight that the multi-component target composition impacts molecular formation in the gas phase and the morphology, composition, and structure of nanoparticles and agglomerates formed.

6.
Environ Sci Technol ; 56(17): 12066-12076, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35976919

RESUMO

Monoterpene photooxidation plays an important role in secondary organic aerosol (SOA) formation in the atmosphere. The low-volatility products can enhance new particle formation and particle growth and thus influence climate feedback. Here, we present the results of α-pinene and Δ-3-carene photooxidation experiments conducted in continuous-flow mode in an environmental chamber under several reaction conditions. The roles of oxidants, addition of NO, and VOC molecular structure in influencing SOA yield are illustrated. SOA yield from α-pinene photooxidation shows a weak dependence on H2O2 concentration, which is a proxy for HO2 concentration. The high O/C ratios observed in the α-pinene photooxidation products suggest the production of highly oxygenated organic molecules (HOM). Addition of ozone to the chamber during low-NOx photooxidation experiments leads to higher SOA yield. With the addition of NO, the production of N-containing HOMs is enhanced and the SOA yield shows a modest, nonlinear dependence on the input NO concentration. Carene photooxidation leads to higher SOA yield than α-pinene under similar reaction conditions, which agrees with the lower volatility retrieved from evaporation kinetics experiments. These results improve the understanding of SOA formation from monoterpene photooxidation and could be applied to refine the representation of biogenic SOA formation in models.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis/química , Poluentes Atmosféricos/análise , Peróxido de Hidrogênio , Monoterpenos/química , Oxidantes , Oxirredução
7.
Environ Sci Technol ; 56(4): 2213-2224, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35119266

RESUMO

Oxidation of the monoterpene Δ3-carene (C10H16) is a potentially important and understudied source of atmospheric secondary organic aerosol (SOA). We present chamber-based measurements of speciated gas and particle phases during photochemical oxidation of Δ3-carene. We find evidence of highly oxidized organic molecules (HOMs) in the gas phase and relatively low-volatility SOA dominated by C7-C10 species. We then use computational methods to develop the first stages of a Δ3-carene photochemical oxidation mechanism and explain some of our measured compositions. We find that alkoxy bond scission of the cyclohexyl ring likely leads to efficient HOM formation, in line with previous studies. We also find a surprising role for the abstraction of primary hydrogens from methyl groups, which has been calculated to be rapid in the α-pinene system, and suggest more research is required to determine if this is more general to other systems and a feature of autoxidation. This work develops a more comprehensive view of Δ3-carene photochemical oxidation products via measurements and lays out a suggested mechanism of oxidation via computationally derived rate coefficients.


Assuntos
Monoterpenos , Aerossóis/química , Monoterpenos Bicíclicos , Monoterpenos/química , Oxirredução
8.
Environ Sci Technol ; 56(4): 2398-2406, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35119274

RESUMO

Biodegradable plastics can reach full degradation when disposed of appropriately and thus alleviate plastic pollution caused by conventional plastics. However, additives can be released into the environment during degradation and the fate of these additives can be affected by the degradation process. Here, we characterized TiO2 particles released from a biodegradable plastic mulch during composting and studied the transport of the mulch-released TiO2 particles in inert sand and agricultural soil columns under unsaturated flow conditions. TiO2 particles (238 nm major axis and 154 nm minor axis) were released from the biodegradable plastic mulch in both single-particle and cluster forms. The mulch-released TiO2 particles were fully retained in unsaturated soil columns due to attachment onto the solid-water interface and straining. However, in unsaturated sand columns, the mulch-released TiO2 particles were highly mobile. A comparison with the pristine TiO2 revealed that the mobility of the mulch-released TiO2 particles was enhanced by humic acid present in the compost residues, which blocked attachment sites and imposed steric repulsion. This study demonstrates that TiO2 particles can be released during composting of biodegradable plastics and the transport potential of the plastic-released TiO2 particles in the terrestrial environment can be enhanced by compost residues.


Assuntos
Plásticos Biodegradáveis , Compostagem , Plásticos , Areia , Solo , Titânio
9.
Sci Adv ; 8(2): eabj0329, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35020441

RESUMO

Aerosol-cloud interactions remain uncertain in assessing climate change. While anthropogenic activities produce copious aerosol nanoparticles smaller than 10 nanometers, they are too small to act as efficient cloud condensation nuclei (CCN). The mechanisms responsible for particle growth to CCN-relevant sizes are poorly understood. Here, we present aircraft observations of rapid growth of anthropogenic nanoparticles downwind of an isolated metropolis in the Amazon rainforest. Model analysis reveals that the sustained particle growth to CCN sizes is predominantly caused by particle-phase diffusion-limited partitioning of semivolatile oxidation products of biogenic hydrocarbons. Cloud-resolving numerical simulations show that the enhanced CCN concentrations in the urban plume substantially alter the formation of shallow convective clouds, suppress precipitation, and enhance the transition to deep convective clouds. The proposed nanoparticle growth mechanism, expressly enabled by the abundantly formed semivolatile organics, suggests an appreciable impact of anthropogenic aerosols on cloud life cycle in previously unpolluted forests of the world.

10.
Environ Sci Technol ; 54(7): 3861-3870, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32154714

RESUMO

Secondary organic aerosol (SOA) accounts for a large fraction of the tropospheric particulate matter. Although SOA production rates and mechanisms have been extensively investigated, loss pathways remain uncertain. Most large-scale chemistry and transport models account for mechanical deposition of SOA but not chemical losses such as photolysis. There is also a paucity of laboratory measurements of SOA photolysis, which limits how well photolytic losses can be modeled. Here, we show, through a combined experimental and modeling approach, that photolytic loss of SOA mass significantly alters SOA budget predictions. Using environmental chamber experiments at variable relative humidity between 0 and 60%, we find that SOA produced from several biogenic volatile organic compounds undergoes photolysis-induced mass loss at rates between 0 and 2.2 ± 0.4% of nitrogen dioxide (NO2) photolysis, equivalent to average atmospheric lifetimes as short as 10 h. We incorporate our photolysis rates into a regional chemical transport model to test the sensitivity of predicted SOA mass concentrations to photolytic losses. The addition of photolysis causes a ∼50% reduction in biogenic SOA loadings over the Amazon, indicating that photolysis exerts a substantial control over the atmospheric SOA lifetime, with a likely dependence upon the SOA molecular composition and thus production mechanisms.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis , Modelos Químicos , Material Particulado , Fotólise
11.
Environ Sci Technol ; 54(5): 2595-2605, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31994876

RESUMO

The diffusivity of semivolatile organic compounds (SVOCs) in the bulk particle phase of a viscous atmospheric secondary organic aerosol (SOA) can have a profound impact on aerosol growth and size distribution dynamics. Here, we investigate the bulk diffusivity of SVOCs formed from photo-oxidation of isoprene as they partition to a bimodal aerosol consisting of an Aitken (potassium sulfate) and accumulation mode (aged α-pinene SOA) particles as a function of relative humidity (RH). The model analysis of the observed size distribution evolution shows that liquid-like diffusion coefficient values of Db > 10-10 cm2 s-1 fail to explain the growth of the Aitken mode. Instead, much lower values of Db between 2.5 × 10-15 cm2 s-1 at 32% RH and 8 × 10-15 cm2 s-1 at 82% RH were needed to successfully reproduce the growth of both modes. The diffusivity within the aged α-pinene SOA remains appreciably slow even at 80% RH, resulting in hindered partitioning of SVOCs to large viscous particles and allowing smaller and relatively less viscous particles to effectively absorb the available SVOCs and grow much faster than would be possible otherwise. These results have important implications for modeling SOA formation and growth in the ambient atmosphere.


Assuntos
Monoterpenos Bicíclicos , Compostos Orgânicos , Aerossóis , Atmosfera , Difusão , Monoterpenos
12.
Sci Total Environ ; 675: 686-693, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31039503

RESUMO

Plastic is ubiquitous in modern life, but most conventional plastic is non-biodegradable and accumulates as waste after use. Biodegradable plastic is a promising alternative to conventional plastic. However, biodegradable plastics must be thoroughly evaluated to ensure that they undergo complete degradation and have no adverse impact on the environment. We evaluated the degradation of biodegradable plastics during 18-week full-scale composting, and determined whether additives from the plastics are released upon degradation. Two biodegradable plastic films-one containing polybutylene co-adipate co-terephthalate (PBAT) and the other containing polylactic acid/poly-hydroxy-alkanoate (PLA/PHA)-were placed into meshbags and buried in the compost. Degradation was assessed by image analysis, scanning electron microscopy, Fourier-transformed infrared spectroscopy, electrophoretic mobility, δ13C isotope analyses, and single particle mass spectrometry of mulch fragments. The results showed >99% macroscopic degradation of PLA/PHA and 97% for PBAT film. Polymers in the biodegradable films degraded; however, micro- and nanoparticles, most likely carbon black, were observed on the meshbags. Overall, biodegradable plastics hold promise, but the release of micro- and nanoparticles from biodegradable plastic upon degradation warrants additional investigation and calls for longer field testing to ensure that either complete biodegradation occurs or that no long-term harm to the environment is caused.


Assuntos
Plásticos Biodegradáveis/análise , Biodegradação Ambiental , Compostagem , Nanopartículas/análise , Poliésteres
13.
Environ Sci Technol ; 53(12): 6669-6677, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31125204

RESUMO

Accurate long-range atmospheric transport (LRAT) modeling of polycyclic aromatic hydrocarbons (PAHs) and PAH oxidation products (PAH-OPs) in secondary organic aerosol (SOA) particles relies on the known chemical composition of the particles. Four PAHs, phenanthrene (PHE), dibenzothiophene (DBT), pyrene (PYR), and benz(a)anthracene (BaA), were studied individually to identify and quantify PAH-OPs produced and incorporated into SOA particles formed by ozonolysis of α-pinene in the presence of PAH vapor. SOA particles were characterized using real-time in situ instrumentation, and collected on quartz fiber filters for offline analysis of PAHs and PAH-OPs. PAH-OPs were measured in all PAH experiments at equal or greater concentrations than the individual PAHs they were produced from. The total mass of PAH and PAH-OPs, relative to the total SOA mass, varied for different experiments on individual parent PAHs: PHE and 6 quantified PHE-OPs (3.0%), DBT and dibenzothiophene sulfone (4.9%), PYR and 3 quantified PYR-OPs (3.1%), and BaA and benz(a)anthracene-7,12-dione (0.26%). Further exposure of PAH-SOA to ozone generally increased the concentration ratio of PAH-OPs to PAH, suggesting longer atmospheric lifetimes for PAH-OPs, relative to PAHs. These data indicate that PAH-OPs are formed during SOA particle formation and growth.


Assuntos
Poluentes Atmosféricos , Ozônio , Hidrocarbonetos Policíclicos Aromáticos , Aerossóis , Monoterpenos Bicíclicos , Monoterpenos
14.
Nat Commun ; 10(1): 1046, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837467

RESUMO

One of the least understood aspects in atmospheric chemistry is how urban emissions influence the formation of natural organic aerosols, which affect Earth's energy budget. The Amazon rainforest, during its wet season, is one of the few remaining places on Earth where atmospheric chemistry transitions between preindustrial and urban-influenced conditions. Here, we integrate insights from several laboratory measurements and simulate the formation of secondary organic aerosols (SOA) in the Amazon using a high-resolution chemical transport model. Simulations show that emissions of nitrogen-oxides from Manaus, a city of ~2 million people, greatly enhance production of biogenic SOA by 60-200% on average with peak enhancements of 400%, through the increased oxidation of gas-phase organic carbon emitted by the forests. Simulated enhancements agree with aircraft measurements, and are much larger than those reported over other locations. The implication is that increasing anthropogenic emissions in the future might substantially enhance biogenic SOA in pristine locations like the Amazon.

15.
Environ Sci Technol ; 52(16): 9225-9234, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30028598

RESUMO

We developed a parametrizable box model to empirically derive the yields of semivolatile products from VOC oxidation using chamber measurements, while explicitly accounting for the multigenerational chemical aging processes (such as the gas-phase fragmentation and functionalization and aerosol-phase oligomerization and photolysis) under different NO x levels and the loss of particles and gases to chamber walls. Using the oxidation of isoprene as an example, we showed that the assumptions regarding the NO x-sensitive, multigenerational aging processes of VOC oxidation products have large impacts on the parametrized product yields and SOA formation. We derived sets of semivolatile product yields from isoprene oxidation under different NO x levels. However, we stress that these product yields must be used in conjunction with the corresponding multigenerational aging schemes in chemical transport models. As more mechanistic insights regarding SOA formation from VOC oxidation emerge, our box model can be expanded to include more explicit chemical aging processes and help ultimately bridge the gap between the process-based understanding of SOA formation from VOC oxidation and the bulk-yield parametrizations used in chemical transport models.


Assuntos
Gases , Hemiterpenos , Aerossóis , Butadienos , Oxirredução , Pentanos
16.
Environ Sci Technol ; 52(3): 1191-1199, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29244949

RESUMO

Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. Here, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversibly reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.


Assuntos
Compostos Orgânicos , Aerossóis , Difusão , Cinética , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...